Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.630
Filtrar
1.
Front Plant Sci ; 15: 1355680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606073

RESUMO

Infraspecific floral trait variations may appear in response to elevational differences in alpine plant species. There is enormous information on the selection of such morphs mediated by biotic and/or abiotic variables. Whether such differences contribute to differences in reproductive strategy and mating outcomes is rarely investigated. We investigated these aspects in two distinct elevational floral morphs (Red and Pink) of Rhododendron arboreum Sm. in Western Himalaya. The red morphs occupy the lower elevations while pink morphs the higher elevations. The two morphs differ in floral traits like phenology, dimension, display, quality of floral rewards, and pollinators that happen to influence interaction with available pollinator pool at each elevation. The pink morph exhibits entomophily, while the red ones show ornithophily. Although experimental pollinations established that both the morphs are self-compatible, selfing results in significantly lower fruit-set than either cross- or open-pollinations. The outcrossing rate in the red morph, as determined by using simple sequence repeat (SSR) markers, was higher (tm=0.82) than that in the pink morph (tm=0.76), with a tendency of the latter to be shifting towards mixed-mating strategy. However, the extent of biparental inbreeding was comparable among the two morphs. It is inferred that the differences in the mating outcomes among the morphs in the tree species are linked to those emerging from floral traits and the pollination by different functional groups of floral visitors.

2.
Plants (Basel) ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611559

RESUMO

The growing interest in maize landraces over the past two decades has led to the need to characterize the Italian maize germplasm. In Italy, hundreds of maize landraces have been developed, but only a few of them have been genetically characterized, and even fewer are currently employed in agriculture or for breeding purposes. In the present study, 13 maize landraces of the west Emilia-Romagna region were morphologically and genetically characterized. These accessions were sampled in 1954 from three provinces, Modena, Parma, and Piacenza, during the characterization project of Italian maize landraces. The morphological characterization of these 13 accessions was performed according to the UPOV protocol CPVO/TP2/3, examining 34 phenotypic traits. A total of 820 individuals were genotyped with 10 SSR markers. The genetic characterization revealed 74 different alleles, a FST mean value of 0.13, and a Nm mean of 1.73 over all loci. Moreover, AMOVA analysis disclosed a low degree of differentiation among accessions, with only 13% of genetic variability found between populations, supporting PCoA analysis results, where the first two coordinates explained only 16% of variability. Structure analysis, supported by PCoA, showed that only four accessions were clearly distinguished for both K = 4 and 6. Italian landraces can be useful resources to be employed in maize breeding programs for the development of new varieties, adapted to different environmental conditions, in order to increase crop resilience and expand the maize cultivation area.

3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 717-727, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621875

RESUMO

Transcriptome sequencing was employed to mine the simple sequence repeat(SSR) locus information of Saposhnikovia divaricata and design specific primers, which aimed to provide a basis for the research on the genetic diversity of S. divaricata germplasm resources. The seed purity, 1 000-seed weight, germination rate, and seed vigor were determined. MISA was used to obtain the SSR locus information from 12 606 unigene longer than 1 kb in the transcriptome database. Forty-three pairs of SSR primers designed in Primer 3 were used to analyze the polymorphism of 28 S. divaricata samples of different sources. The results showed that there were differences in the seed purity, 1 000-seed weight, germination rate, vigor, and seed length and width among S. divaricata samples of different sources. Particularly, the germination rate and seed vigor had significant differences, and HB-ZJK1, NMG-CF4, NMG-BT, NMG-HLE1, and NMG-CF2 had significantly higher 1 000-seed weight, germination rate, and seed vigor than the samples of other sources. Among the 86 233 unigene, 12 606(14.62%) unigene contained 15 958 SSR loci, with one SSR locus every 5 009 bp on average. The SSR loci were mainly single nucleotide and dinucleotide repeats, which were dominated by G/C and TC/AG, respectively. All the primers were screened by using 28 S. divaricata sample from different habitats, and the primers corresponding to the amplification products with clear bands and stable polymorphism were obtained. The clustering results of the biological characteristics and genetic diversity of the 28 S. divaricata samples were basically consistent, and the samples of the same origin(HB-AG1, HB-AG2, HB-ZJK1, and HB-ZJK2) generally gathered together and had close genetic relationship. The SSRs in S. divaricata transcriptome has high frequency, rich types, and high polymorphism, which provides candidate molecular markers for the germplasm identification, genetic map construction, and molecular-assisted breeding.


Assuntos
Apiaceae , Transcriptoma , Polimorfismo Genético , Repetições de Microssatélites/genética , Apiaceae/genética , Etiquetas de Sequências Expressas
4.
Environ Geochem Health ; 46(5): 159, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592645

RESUMO

In recent years, low-density polyethylene (LDPE) has emerged as an essential component of the routine tasks that people engage in on a daily basis. However, over use of it resulted in environmental buildup that contaminated aquatic habitats and human health. Biodegradation is the most effective way for controlling pollution caused by synthetic plastic waste in a sustainable manner. In the present study, the LDPE degrading bacterial strain was screened from gut of Earthworms collected from plastic waste dumped area Mettur dam, Salem district, Tamil Nadu, India. The LDPE degrading bacterial strain was screened and identified genotypically. The LDPE degrading Bacillus gaemokensis strain SSR01 was submitted in NCBI. The B. gaemokensis strain SSR01 bacterial isolate degraded LDPE film after 14 days of incubation and demonstrated maximum weight loss of up to 4.98%. The study of deteriorated film using attenuated total reflection-Fourier transform infrared revealed the presence of a degraded product. The degradation of LDPE film by B. gaemokensis strain SSR01 was characterized by field-emission scanning electron microscopy analysis for surface alterations. The energy dispersive X-ray spectroscopy test confirmed that the broken-down LDPE film had basic carbon reduction. The present study of LDPE flim biodegradation by B. gaemokensis strain SSR01 has acted as a suitable candidate and will help in decreasing plastic waste.


Assuntos
Bacillus , Oligoquetos , Humanos , Animais , Polietileno , Índia , Biodegradação Ambiental
5.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592835

RESUMO

Maize (Zea mays L.) is an important cereal and is affected by climate change. Therefore, the production of climate-smart maize is urgently needed by preserving diverse genetic backgrounds through the exploration of their genetic diversity. To achieve this, 96 maize inbred lines were used to screen for phenotypic yield-associated traits and grain quality parameters. These traits were studied across two different environments (Anand and Godhra) and polymorphic simple sequence repeat (SSR) markers were employed to investigate the genetic diversity, population structure, and trait-linked association. Genotype-environment interaction (GEI) reveals that most of the phenotypic traits were governed by the genotype itself across the environments, except for plant and ear height, which largely interact with the environment. The genotypic correlation was found to be positive and significant among protein, lysine and tryptophan content. Similarly, yield-attributing traits like ear girth, kernel rows ear-1, kernels row-1 and number of kernels ear-1 were strongly correlated to each other. Pair-wise genetic distance ranged from 0.0983 (1820194/T1 and 1820192/4-20) to 0.7377 (IGI-1101 and 1820168/T1). The SSRs can discriminate the maize population into three distinct groups and shortlisted two genotypes (IGI-1101 and 1820168/T1) as highly diverse lines. Out of the studied 136 SSRs, 61 were polymorphic to amplify a total of 131 alleles (2-3 per loci) with 0.46 average gene diversity. The Polymorphism Information Content (PIC) ranged from 0.24 (umc1578) to 0.58 (umc2252). Similarly, population structure analysis revealed three distinct groups with 19.79% admixture among the genotypes. Genome-wide scanning through a mixed linear model identifies the stable association of the markers umc2038, umc2050 and umc2296 with protein, umc2296 and umc2252 with tryptophan, and umc1535 and umc1303 with total soluble sugar. The obtained maize lines and SSRs can be utilized in future maize breeding programs in relation to other trait characterizations, developments, and subsequent molecular breeding performances for trait introgression into elite genotypes.

6.
Mol Biol Rep ; 51(1): 534, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642172

RESUMO

BACKGROUND: Thymus algeriensis Boiss. et Reut. is one of the most widespread North African species of the genus Thymus L. The species is subshrub growing primarily in subtropical biome of Morocco, Algeria, Tunisia and Libya. In Tunisia, the plant species is under high pressure of anthropogenic activities including over-collecting. The assessment of genetic diversity and population structure of T. algeriensis is a pioneer step to retrace its evolutionary history and to perform appropriate conservation strategies of the plant species. METHODS AND RESULTS: Seven wild populations growing, widely, in different bioclimatic zones were selected and analysed using two molecular markers systems. Fifteen Simple Sequence Repeats (SSRs) and fifteen Inter-Simple Sequence Repeats (ISSRs) were used to characterize genetically 140 different genotypes. The results showed a high molecular variation within populations and among the studied genotypes. The intra-populations genetic diversity revealed by SSRs was higher (P = 80.95%, Na = 2.143 and He = 0.364) than that based on ISSRs (P = 78.12%, Na = 1.632, He = 0.265 and I = 0.398). As demonstrated by inbreeding coefficients, a significant level of differentiation and a low level of gene flow were detected among studied populations (FST = 0.161 for SSRs and ΦST = 0.197 for ISSRs). Furthermore, the results of ISSRs marker suggest land strips as barriers in population genetic structure. While SSRs marker reflects a relatively structured bioclimatic patterns of studied populations. The Bayesian analysis showed a specific adaptation of populations to local environments. CONCLUSIONS: The used molecular markers (ISSRs and SSRs) seem to be effective in deciphering genetic polymorphism of Tunisian genotypes of T. algeriensis. Therefore, the genetic structure of the studied genotypes could constitute a starting point for further conservation, characterization and breeding programs.


Assuntos
Variação Genética , População do Norte da África , Humanos , Variação Genética/genética , Teorema de Bayes , Polimorfismo Genético/genética , Biomarcadores , Repetições de Microssatélites/genética
7.
Biochimie ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642825

RESUMO

Astrocytes are glial cells that play key roles in neuroinflammation, which is a common feature in diabetic encephalopathy and aging process. Metformin is an antidiabetic compound that shows neuroprotective properties, including in inflammatory models, but astroglial signaling pathways involved are still poorly known. Interferons α/ß are cytokines that participate in antiviral responses and the lack of their signaling increases susceptible to viral infections. Here, we investigated the effects of metformin on astrocytes from hypothalamus, a crucial brain region related to inflammatory processes. Astrocyte cultures were derived from interferon α/ß receptor knockout (IFNα/ßR-/-) and wild-type (WT) mice. Metformin did not change the expression of glial fibrillary acidic protein but caused an anti-inflammatory effect by decreasing pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß), as well as increasing gene expression of anti-inflammatory proteins interleukin-10 and Nrf2 (nuclear factor erythroid derived 2 like 2). However, nuclear factor κB p65 and cyclooxygenase 2 were downregulated in WT astrocytes and upregulated in IFNα/ßR-/- astrocytes. AMP-activated protein kinase (AMPK), a molecular target of metformin, was upregulated only in WT astrocytes, while sirtuin 1 increased in both mice models. The expression of inducible nitric oxide synthase was decreased in WT astrocytes and heme oxygenase 1 was increased in IFNα/ßR-/- astrocytes. Although loss of IFNα/ßR-mediated signaling affects some effects of metformin, our results support beneficial roles of this drug in hypothalamic astrocytes. Moreover, paradoxical response of metformin may involve AMPK. Thus, metformin can mediate glioprotection due its effects on age-related disorders in non-diabetic and diabetic encephalopathy individuals.

8.
Front Plant Sci ; 15: 1362917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584946

RESUMO

Abiotic stresses such as drought and salt are significant threats to crop productivity. The root system adaptation and tolerance to abiotic stresses are regulated by many biochemical reactions, which create a complex and multigenic response. The present study aims to evaluate the diversity of root responses to cyclic abiotic stress in three modern durum wheat varieties and one hydric stress-tolerant landrace in a pot experiment from seedling to more advanced plant development stages. The genotypes responded to abiotic stress during the whole experiment very differently, and at the end of the experiment, nine out of the 13 traits for the landrace J. Khetifa were significantly higher than other genotypes. Moreover, single sequence repeat (SSR) genetic analysis revealed high polymorphism among the genotypes screened and interesting private alleles associated with root system architecture traits. We propose that the markers used in this study could be a resource as material for durum wheat breeding programs based on marker-assisted selection to increase the vegetal material with high drought and salt stress tolerance and to identify candidates with strong early vigor and efficient root systems. This study provides appropriate genetic materials for marker-assisted breeding programs as well as a basic study for the genetic diversity of root traits of durum wheat crops.

9.
Front Plant Sci ; 15: 1386225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584944

RESUMO

Among the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, via Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles. SSR analysis revealed resistant alleles for 16 out of 88 genotypes. Phenotypic data identified seven DM and 31 PM resistant genotypes. GWAS identified two new loci associated with DM resistance, located on chromosome 15 and 16 (designated as Rpv36 and Rpv37), and two with PM resistance, located on chromosome 6 and 17 (designated as Ren14 and Ren15). The four novel loci identified genomic regions rich in genes related to biotic stress response, such as genes involved in pathogen recognition, signal transduction and resistance response. This study highlights potential candidate genes associated with resistance to DM and PM, providing valuable insights for breeding programs for resistant varieties. To optimize their utilization, further functional characterization studies are recommended.

10.
Mol Breed ; 44(4): 30, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634111

RESUMO

The gene-derived functional markers are considered effective to use in marker-assisted breeding and genetic diversity analysis. As of now, no functional markers have been identified from miRNAs regulating yield traits. The miRNAs play a key role as regulators in controlling the candidate genes involved in grain yield improvement in rice. In this study, 13 miRNA-SSR and their target gene SSR markers were mined from 29 yield-responsive miRNA along with their 29 target genes in rice. The validation of these markers showed that four miRNA-SSRs and one target gene SSR markers had shown polymorphism among 120 diverse rice genotypes. The PIC values ranged from 0.25 (OsARF18-SSR) to 0.72 (miR408-SSR, miR172b-SSR, and miR396f-SSR) with an average value of 0.57. These polymorphic markers grouped 120 rice genotypes into 3 main clusters based on the levels of high genetic diversity. These markers also showed significant association with key yield traits. Among all, miR172b-SSR showed a strong association with plant height in two seasons. This investigation suggests that this new class of molecular markers has great potential in the characterization of rice germplasm by genetic diversity and population structure and in marker-assisted breeding for the development of high-yielding varieties. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01462-z.

11.
Anim Genet ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500412

RESUMO

China was the first country in the world to breed goldfish and has generated many unique goldfish varieties, including the most aristocratic Chinese palace goldfish. Due to the lack of scientific research on Chinese palace goldfish, their selection and breeding are mainly carried out through traditional hybridization, leading to serious inbreeding and the degradation of germplasm resources. To this end, whole-genome resequencing was performed to understand the genetic variation among three different varieties (eggpompons, goosehead, and tigerhead) from nine core conserved populations in China. A total of 15 polymorphic SSRs were developed for population genetics, and all tested populations were considered moderately polymorphic with an average polymorphism information content value of 0.4943. Genetic diversity in different varieties showed that all conserved populations were well protected with the potential for continued exploitation. This study provides reliable molecular tools and a basis for designing conservation and management programs in Chinese palace goldfish.

12.
Environ Toxicol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491797

RESUMO

Silicosis is a systemic disease caused by long-term inhalation of free SiO2 and retention in the lungs. At present, it is still the most important occupational health hazard disease in the world. Existing studies have shown that non-coding RNA can also participate in complex fibrosis regulatory networks. However, its role in regulating silicotic fibrosis is still unclear. In this study, we constructed a NR8383/RLE-6TN co-culture system to simulate the pathogenesis of silicosis in vitro. Design of miR-204-3p mimics and inhibitors to overexpress or downregulate miR-204-3p in RLE-6TN cells. Design of short hairpin RNA (sh-RNA) to downregulate MRAK052509 in RLE-6TN cells. The regulatory mechanism of miR-204-3p and LncRNA MRAK052509 on EMT process was studied by Quantitative real-time PCR, Western blotting, Immunofluorescence and Cell scratch test. The results revealed that miR-204-3p affects the occurrence of silica dust-induced cellular EMT process mainly through regulating TGF-ßRΙ, a key molecule of TGF-ß signaling pathway. In contrast, Lnc MRAK052509 promotes the EMT process in epithelial cells by competitively adsorbing miR-204-3p and reducing its inhibitory effect on the target gene TGF-ßRΙ, which may influence the development of silicosis fibrosis. This study perfects the targeted regulation relationship between LncRNA MRAK052509, miR-204-3p and TGF-ßRΙ, and may provide a new strategy for the study of the pathogenesis and treatment of silicosis.

13.
Biochem Genet ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554199

RESUMO

D-borneol is a double-loop monoterpene with a wide use in the pharmaceutical, food, and cosmetics industries. Natural D-borneol can be extracted from branches and leaves of D-borneol resource plants. With the widespread use of natural D-borneol, the identification of D-borneol resource plants and the protection of germplasm resources have become the focus of research. In this study, plant leaf morphology, chemical composition, and simple sequence repeat (SSR) molecular marker analysis were used to analyze and cluster 5 species of D-borneol resource plants and their closely related species. It was found that all three analysis methods could distinguish and cluster these D-borneol resource plants to some degree. The result of SSR analysis using capillary electrophoresis was the best, and it could distinguish Mei Pian tree from Yin Xiang as well as Longnao Zhang from An Zhang. The correlation analysis between SSR similarity matrix and leaf morphology analysis and between SSR similarity matrix and chemical composition similarity matrix revealed that they both had significant correlations (P < 0.0001) and the correlation (r = 0.588) between SSR and leaf morphology was a little higher than that (r = 0.519) between SSR and chemical composition. This indicated that the environment had a greater impact on the chemical composition than on leaf morphology. The research findings will offer efficient techniques to cluster natural D-borneol resource plants and establish a theoretical basis for their future development and utilization.

14.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513663

RESUMO

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Humanos , Transporte Biológico , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/ultraestrutura , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Transmissão Sináptica , Imidazóis/química , Sarcosina/análogos & derivados , Piperidinas/química
15.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542142

RESUMO

Simple sequence repeats (SSRs) have become one of the most popular molecular markers and are used in numerous fields, including conservation genetics, population genetic studies, and genetic mapping. Advances in next-generation sequencing technology and the growing amount of genomic data are driving the development of bioinformatics tools for SSR marker design. These tools work with different combinations of input data, which can be raw reads or assemblies, and with one or more input datasets. We present here a new strategy and implementation of a simple standalone pipeline that utilizes more than one assembly for the in silico design of PCR primers for microsatellite loci in more than one species. Primers are tested in silico to determine if they are polymorphic, eliminating the need to test time-consuming cross-species amplification in the laboratory. The end result is a set of markers that are in silico polymorphic in all analyzed species and have great potential for the identification of interspecies hybrids. The efficiency of the tool is demonstrated using two examples at different taxonomic levels and with different numbers of input assemblies to generate promising, high-quality SSR markers.


Assuntos
Genômica , Polimorfismo Genético , Marcadores Genéticos , Mapeamento Cromossômico , Repetições de Microssatélites/genética , Primers do DNA/genética
16.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542147

RESUMO

Olive growing in Croatia has a long tradition and is of great economic and social impact. The present study includes a set of 108 tree samples (88 samples corresponding to 60 presumed cultivars and 20 trees of unnamed ones) collected from 27 groves in the entire olive growing area, and is the most comprehensive survey to be conducted in Croatia. The genetic diversity, relationships, and structures of olive plants were studied using eight microsatellite loci. All loci were polymorphic and revealed a total of 90 alleles. A total of 74 different genotypes were detected that were subjected to further diversity and genetic relationship studies. The Fitch-Margoliash tree and Bayesian analysis of population structure revealed a complex relationship between the identified olive genotypes, which were clustered into three gene pools, indicating different origins of Croatian olive germplasms. Excluding the redundant germplasms, 44 different genotypes among the sampled trees of well-known cultivars and 16 new local germplasms were identified. In addition, we provide the etymology of 46 vernacular names, which confirms that the vast majority of traditional Croatian cultivars have common and widespread names. The results presented herein underline the importance of safeguarding local cultivars and conducting continuous surveys.


Assuntos
Olea , Olea/genética , Croácia , Teorema de Bayes , Filogenia , Genótipo , Repetições de Microssatélites/genética , Variação Genética
17.
Genomics ; 116(3): 110824, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38485062

RESUMO

Aralia elata is an Araliaceae woody plant species found in Northeastern Asia. To understand how genetic pools are distributed for A.elata clones, we were to analyze the population structure of A.elata cultivars and identify how these are correlated with thorn-related phenotype which determines the utility of A.elata. We found that the de novo assembled genome of 'Yeongchun' shared major genomic compartments with the public A.elata genome assembled from the wild-type from China. To identify the population structure of the 32 Korean and Japanese cultivars, we identified 44 SSR markers and revealed three main sub-clusters using ΔK analysis with one isolated cultivar. Machine-learning based clustering with thorn-related phenotype correlated moderately with population structure based on SSR analysis suggested multi-layered genetic regulation of thorn-related phenotypes. Thus, we revealed genetic lineage of A.elata and uncovered isolated cultivar which can provide new genetic material for further breeding.

18.
Sci Rep ; 14(1): 6257, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491044

RESUMO

Corms of Gladiolus grandiflorus cv. "White Prosperity" was irradiated via red laser at wavelength 635 nm. Various morphological, flowering, elemental and chemical characterizations were studied. Irradiation with different power (5, 20, and 50 mW) and various irradiation time (0.0, 0.5, 1, 3, 5 and 10 min) was studied. Several characters), totaletermined include vegetative growth parameter (spouting days, plant height (cm), leaves number, leaves fresh and dry weights (g/plant), diameter of plant middle part (mm) and leaf area (cm2), floral parameters (flowering days, vase life (day), fresh and dry weights of inflorescence (g/plant), number of flowers per inflorescence, inflorescence length(cm), flowers diameter(cm), number of corms per plant, corms fresh weight(g/plant), circumference/ corms), pigments [total chlorophylls in leaves (SPAD), anthocyanin content (mg/100 g F.W.) in petals], NPK (%) in new corms and chemical composition in corms; total carbohydrates (%),total phenol (µg CE/g (%),total flavonoid (µg CE/g) (%), antioxidant (DPPH IC50 (µg /ml (%), and proline content (µ moles/g). The results showed that the medium level (20 mW) of He-Ne laser at 5 min caused favorable changes in the leaf anatomical structures and other studied characters followed by the low level (5 mW) of He-Ne laser at 5min. 112 bands emerged from 22 SSR primers, ranging between 130 and 540 bp, with 32 bands having polymorphism ranging from 17-100%. Out of the 22 SSR primers, 3 primers exhibited a high polymorphism percentage, i.e., SSR6, SSR16 and SSR22 which exhibited 7 positive markers. These findings revealed the efficiency of SSR primers for differentiating gladiolus plants and revealed that some alleles were affected by laser in their corms and the expression resulted in color or abnormalities in leaves and/or flowers. Mutation in some alleles could result in abnormalities like mutation in the allele with 410 bp revealed by SSR16.


Assuntos
Flores , Iridaceae , Flores/genética , Folhas de Planta/genética , Lasers , Crescimento e Desenvolvimento , Expressão Gênica
19.
Front Plant Sci ; 15: 1349641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529066

RESUMO

Introduction: Elymus nutans holds ecological and pastoral significance due to its adaptability and nutritional value, the Qinghai-Tibet Plateau (QTP) is a key hub for its genetic diversity. To conserve and harness its genetic resources in highland ecosystems, a thorough assessment is vital. However, a comprehensive phylogeographic exploration of E. nutans is lacking. The objective of this study was to unravel the genetic diversity, adaptation, and phylogenetics of E. nutans populations. Methods: Encompassing 361 individuals across 35 populations, the species' genetic landscape and dynamic responses to diverse environments were decoded by using four chloroplast DNA (cpDNA) sequences and nine microsatellite markers derived from the transcriptome. Results and discussion: This study unveiled a notable degree of genetic diversity in E. nutans populations at nuclear (I = 0.46, He = 0.32) and plastid DNA levels (Hd = 0.805, π = 0.67). Analysis via AMOVA highlighted genetic variation predominantly within populations. Despite limited isolation by distance (IBD), the Mekong-Salween Divide (MSD) emerged as a significant factor influencing genetic differentiation and conserving diversity. Furthermore, correlations were established between external environmental factors and effective alleles of three EST-SSRs (EN5, EN57 and EN80), potentially linked to glutathione S-transferases T1 or hypothetical proteins, affecting adaptation. This study deepens the understanding of the intricate relationship between genetic diversity, adaptation, and environmental factors within E. nutans populations on the QTP. The findings shed light on the species' evolutionary responses to diverse ecological conditions and contribute to a broader comprehension of plant adaptation mechanisms.

20.
J Fungi (Basel) ; 10(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535241

RESUMO

This study explores the population dynamics of Phytophthora infestans in Estonia from 2005 to 2022, focusing on genetic diversity and potential shifts in reproductive strategies. In total, 153 P. infestans isolates were collected throughout Estonia over ten growing seasons. Genotyping revealed considerable genetic diversity, with most isolates not corresponding to known multilocus genotypes (MLGs). Still, instances of invasive clonal lineages were observed, notably EU_41_A2. The data indicate the likelihood of random mating rather than clonal reproduction in all the analyzed years. The principal coordinate analysis (PCoA) results revealed no distinct clustering among the sampling years. Statistical analysis and the minimum spanning network (MSN) indicated low genetic differentiation between years with minimal fluctuations in allele frequencies. The continuous monitoring of P. infestans populations is essential for detecting any changes from the current evolutionary trajectory and implement effective disease management strategies, especially considering the recent emergence of EU_41_A2 in the Nordics and the potential impacts of climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...